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ON THE FORMATION OF A WAVE PACKET IN A BOUNDARY LAYER ON A FLAT PLATE* 

E.D. TERENT'YEV 

The framework of the theory of the boundary layer with selfinduced pressure 
/l, 2/ is used to study the initial stage of the development of the 
perturbations caused by triggering a vibrator. The values of the pressure 
are computed for short characteristic times, and this makes it possible 
to observe how a wave packet is formed. 

The theoretical study of wave packets is usually restricted /3-6/ to quite large values 
of the characteristic time, measured from the instant of action on the boundary layer and such 
that the packet is practically already formed. A solution of the problem of the harmonic 
vibrator is constructed below for the short time intervals after the oscillator has been 
triggered and this, together with the results of /5, 6/, enable us to follow the development 
of linear perturbations in the boundary layer for any length of time. 

Naturally, the theory of the boundary layer with selfinduced pressure is applicable, in 
its non-stationary version /7, 8/, only when the Reynolds numbers significantly exceed the 
critical value. It was shown in /9, lO/ that the linear version of the theory describes 
perturbations with wave numbers lying below the upper branch of the neutral stability curve, 
and the parameters corresponding to the largest growth increments refer to those described by 
the theory in question. In order to analyse the lengths and frequencies of the waves adjacent 
to the upper branch of the neutral stability curve, it is necessary to employ expansions /ll- 
13/ different from those of the three-layer theory /l, 2/. 

Let us consider the flow past a heat-insulated plate on which a harmonic vibrator is 
situated at a distance L* from the leading edge. Let the incident flow be subsonic, with 
velocity V,* directed along the plate, let pm* be the density of the unperturbed gas and 
let h,,* be the first viscosity coefficient. We will introduce a small parameter a== 
R,-'i. (R, = p,*v-*L*lh,,*) and choose the longitudinal dimensions of the vibrator 0 (L*e3), 
the oscillation amplitude O(L*e6) and the frequency O(V_*/(Z,*e~)). 

To describe the motion caused by such a vibrator , we can use the theory of the boundary 
layer with selfinduced pressure in its non-stationary version /7, 8/. When analysing the 
principal terms of the perturbations we find, that according to this theory the fundamental 
unperturbed motion of the gas is plane parallel. Using the dimensionless variables /8/ we 
shall specify the law of motion of the vibrator and its form, for the time t> 0 

where o0 is the dimensionless frequency, x, y aretheCartesiancoordinates, the function fi(x) 
defines a triangular formwithparameters a and b(f, (x) = 0 f or x Q 0, 2x for 0 < x < b, 2b (a - x)l(a - 
b) for b< xQ a, 0 for x) aj. Fortheinstantsoftime t< 0 wed.11 put Y, = 0 andassumethatthe 
boundarylayerisunperturbed. 

The problem of a vibrator was studied in this formulation in /14/, where an expression 
forthepressure perturbation was written in terms of inverse Fourier and Laplace transforms. 
Making minor changes, we shall rewrite it in the form (I is a positive number) 

p1 = nA/~2-‘h00 Re [ Tkjlp (k) PkXdkJ (t, k, 6Q] 

I+h 

J= 
s 

Ai’ (Q) em* 
@ddo9 @= (W~+aQ)Qg(n,k) ’ !a=0 

1 --im (ik)“’ 

fip (k) = - I/$ & (1- -&- e+b + -& &Q) 

Qa (8, k) = - Ai' (Q) + i’/ak’/. [G - j Ai (z) da] 
0 

*Prikl.Matem.Mekhan.,51,5,814-819,1987 
640 



641 

The analysis in /14, 15/ showed that when t-w, expression (1) defines, in the region 

1(( x < Wt With % > a* to* = 2,298 is the frequency of neutral oscillations), a monochro- 
matic Tollmien-Schlichting wave of frequency 00. The wave packet is distributed at distances 

x> 2,4t /6/. A method of evaluating the integrals (1) given 
in /6/, enabled us to study the case when t> 25, but as the 
results obtained showed, the wave packet was already formed 
after such a time. The aim of this paper is to evaluate the 
integral (1) for 0< t(3, i.e. for times at which the wave 
packet is being formed. 

Numerical integration of the integral J involves large 
amounts of computer time due to the complicated nature of the 
integrand and the need to carry out the computations for a large 
number of values of k and various values of t. Therefore, we 
shall calcuate J using the methods of the theory of functions 
of a complex variable. 

Fig.1 Let us consider the roots of the denominatoroftheintegrand 
in the integral J. An analysis /13/ of the solutions of the 

dispersion equation Qs(8,k)= 0 has shown that k varies along the positive part of the real 
axis, and all its roots w,,(k) are simple and lie to the left of the path of integration. When 

k>O is fixed and n increases. The relations 1 o,(k) I- ca and arg o, (k)- 4n/3 hold. Letus 
draw on arc C,, of radius r0 so that it passes between the neighbouring roots o1 (k) and 

0~1 (k) (Fig.1). Then by virtue of Cauchy's theorem we have 

l+im 

5 @Jdo=2ni[resQ,(iw,) + res@(- iw,) + ~r,s@(,,(k))] - 
I-,ca n=1 

s 
0dw, res@((io,)= exp(i%t) Ai’ 

CT1 

~hc!s (Qo. k) 

(2) 

res d,(w,, (k))= exp (w,t)(ik)"* A~'(Q,,)[(w,~ + 0~2) x 

(w, + ik2) Ai(Q,) Q,=w,, (ik)-"3, Q,=w,(k)(ik)-*A 

When r0 increases, and therefore when j increases, the integral 
to zero. When j-+X and k is fixed, the condition I 01 I - I*‘, 
estimate holds for the residues: 

I res @ (a,) 1 - j-‘/a exp (--a,tf’s), 4, > 0 

Therefore when j increases , the series on the right-hand side 

t+t- _ r 

along the arc C,, tends 
holds and the following 

of (2) will converge 

J=~~i_~a~=2nilres~(ioo)+res~(-iw,)+r res@(w,(k))) 
n=* 

(3) 

As the estimates in /14/ have shown, as t-+ 00, the first term of the series in n on 
the right-hand side of (3.3) will suffice. If, however, t is not large, then several terms 
of the series must be used. Calculations of the function J(t, k, wO) from (3), using the 
first 10 terms of the series, showed that when t> 0,3, the neglected terms become insignifi- 
cant for all values of k except those in a small neighbourhood of k = 0. This neighbourhood, 
however, increases as t decreases , and an increasing number of terms has to be taken into 
account. 

Let us construct a different method of calculating J(t, k,o,) for small values of time 
lt Q 0. 3). To do this we consider a contour C.. of radius r, situated in the riaht half- 
&a& 0 (Ffg.1). Since 
plane o to the right of 

the integrand @ has'ho singularities in the finite part-of the 
the contour of integration we have, according to Cauchy's theorem, 

Him 

s 
@ddo=- lim S @do l-h rO-ca G2 

If the integrand tends exponentially to zero along the arc C,, as ] w I---, 00, itincreases 
exponentially along the arc C,, as 1 w I increases. At the same time, when k is fixed and 
101 increases, so does hl and the inequality --5n/6< argQ <n/6 holds for w belonging 
to the arc C,,. For such ]B I--f 50 the derivative and the integral of the Airy function can 
be replaced by their asymptotic expansions /16/, and as a result we obtain 
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where CI,, are the coefficients of the expansion of 3Ai (2) dz and C,,, arethecoefflcients 

of the expansion of Ai'( 
Using a program for thedivision of polynomials , we shall use a digital computer to 

calculate the coefficients C,,, which yield the quotient from dividing two series on the 
right-hand side of (4). The coeffiaients Cq,,, will be real, since CI,,, and C,,,, are real. 
Expressing further 0 in terms of k and w, dividing the polynomials in w-'~~ once again and 
collecting in the quotient the terms of like order in k, we obtain a computer. 

a, 
e”l - -- 
oa r: s bo 

k%, (wo, ~1, cp, = x C,,,w-m/“/a 
n=o rn=heq 

where rpn(oO,o) are polynomials of degree g(n) in the variable a-'/% , with complex coef- 
ficients Gn,, (%I). 

Integrating @ with respect to the variable o along the contour C,, presents no dff- 
ficulties, since standard methods can be used to show that 

as rO-+m. 

N = 1, 2, . . .; (I/&N = Vz (‘/a + 1) . . . (I/* + N - 1) 

Therefore, we can write the integralJ in the form of a series 

J (t, k, wo) = i C,k” (6) 

(5) 

with complex coefficients C,, depending on wg and t. 
The~probZexi of the cunvergence al Me series on the rfgbt-hand side of (6) can be ?Bived- _- - 

by making a sufficiently coarse estimate of the behaviour of the coefficients C, as n--, M. 
Since the coefficients C,,, vary just as Cl,nr i.e. into proportion to nl (the dependence 
on the powers of n can be disregarded) and the lower limit in the sum which gives (P,, can be 
assessed as h(n)- h/2, therefore in accordance with (5) we obtain 

I&l- . tS"&z~/13n/21! (7) 

The estimate (7) is rough, but yields important conclusions. Series (7) converges 
absolutely and has an infinite radius of convergence. When calculating J to the necessary 
degree of accuracy for given k, the increase in t results in the need to take an increasing 
number of terms into consideration. These properties are well illustrated by the calculation 
of the function J carried out for various values of k,t and 00. Since the series (6) con- 
verges absolutely, it can be considered in the whole complex k plane. Thus the series (6) 
defines an entire analytic function of the variable k, has no singularities in the finite part 
of J, and the point at infinity will represent the essential singularity of the series. 

The construction of the representation of the function J withhelpofaseries in residues 
(3) and in the form of a power series complement each other. Although both series converge 
absolutely and can be used for any values of k and t , nevertheless each series has its own 
domain of practical applicability connected with the fact that only a finite number of temS 
can be used in the computations. If we fix t, then several tens of terms of the series (6) 
will yield an expression for J with a high degree of accuracy for k<kb,and conversely, 
several terms of the series (3) will give J with good accuracy when k>kb, Finally, the 
limit value kb is conditional. It depends on the variable t, the number of terms used in the 
series, and on the accuracy of the determination of J. Xf t<0,3, then the boundary ka will 
be sufficiently large and in order to compute the integrals from (1) in k, it will be sufficient 
to use expression (6), and in the case of t>1,5 expression (3). The value kb= 2 was 
chosen for the intermediate values of t. 

When using a computer with series (61, we must utilize double accuracy (24 decimal places 
in the mantissa, ranging from -1232 to +1232). This is connecteduiththe extraordinarily 
rapid growth of C,,, and CdRn, and the very small values of the integrals (5). The com- 

putations were carried out using 150 terms of the series , and the highest value of k was k = 7. 
Computing using series (3) were carried out using 10 terms, and the highest value of k 

was k = 12. Additional computations were carried out for t&2,5 using only the first term 
(n = 1) in the series (3), and the result agreed completely with that obtained using a lO-term 
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approximation. 
Fig.2 shows graphs of the pressure perturbations pl(t,x). generated by a triangular 

vibrator with parameters a = 2; b = 1. switched on at t = 0 at the supercritical frequency 
o0 = 3,0. When t = 0,l (Fig.Za) the function p1 is almost symmetrical with respect to the 
vibrator shown in the figure with a dashed line. The perturbation reaches its highest 
absolute value above the centre of the vibrator. It becomes small towards its ends and takes 
the opposite sign at the ends, the value at the rear end of the vibrator slightly exceeding 
the value at the front end. A drop in pressure above the central part of the vibratorprojected 
at the instant t = 0,l into the boundary layer is characteristic of external subsonic flow. 
When t = OJ (Fig.Zb),thepressure in the central part continues to fall as the vibrator 
rises, and the asymmetry intensifies due to the increase in pressure behind the rear end of 
the vibrator. When t = 0,4, (Fig.Pc), the pressure perturbation behind the rear end becomes 

almost equal to that above the vibrator, and another complete oscillation can be fully dis- 
cerned downstream. When t = I,0 (Fig.Zd), the pressure perturbation takes a form character- 
istic of the wave packet whose development over a period of time yields the structure dis- 
cussed in /6/. The initial stages of the development of perturbations in the boundary later 
described here, agree qualitatively with those observed experimentally*.(*Grek' G.R., ~ozlov 
V.V. and RAMOEANOV M.P., Experimental study of the appearance and development of two-dimen- 
sional wave packets in a boundary layer. Preprint 11, Novosibirsk, In-t teoret. i prikl. 
mekhaniki SO AN SSSR, 1986.) 

Fig.2 
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ASYMPTOTIC THEORY OF A WAVE PACKET IN A BOUNDARY LAYER ON A PLATE* 

O.S. RYZHOV and I.V. SAVENKOV 

The propagation of a wave packet generated by a point source in a boundary 
layer on a flat plate is considered. The fluid is assumed to be incom- 
pressible, and the distance from the leading edge oftheplate is chosen to 
be so large, that the Reynolds number can be assumed to tend to infinity. 
The field of perturbed motion is constructed using the framework of the 
linearized theory of the boundary layer with selfinduced pressure, with 
help of expansions in Laplace integrals with respect to time and Fourier 
integrals with respect to two spatial variables. The saddle-point method 
is used to calculate the inverse transforms. 

The pulsating motion of the fluid in the wave packet (laminar vortex spot) is character- 
ized by a continuous frequency spectrum. The other special property of the wave packet is 
that the oscillations are modulated already in the linear stage of its propagation, and thanks 
to this the amplitude has a sharp maximum at the centre of the perturbed region. The mutual 
interaction of the wave with continuous distribution of frequencies and wave lengths means 
that the spectrum of combinative tones is also continuous. The data from the experiments 
where several isolated harmonics were superimposed /l/**(**Kazanov Yu.S., Kozlov V.V. and 
Levchenko V.Ya., Experiments on non-linear wave interaction in a boundary layer. Preprint 16, 
Novosibirsk, In-t teoret. i prikl. mekhaniki, SO AN SSSR, 1978.) show that when the oscillation 
amplitude increases and the non-linear stage of the process is reached, it is the amplitude 
of the combination tones that grows most rapidly. The amplitude-of the fundamental harmonics 
grows more slowly. This leads one to the conclusion that the transition from laminar to 
turbulent flow of the fluid must occur within the wave packet very violently. Indeed, the 
measurements in /2/ show that the non-linear amplification of the originally monochromatic 
Tollmien-Schlichtfng (TS) wave from the unstable frequency range acccunpanied by the appearance 
of turbulent pulsations, lasts mu& longer than the explosive collapse of the wave packet and 
its transformation into a turbulent spot. 

It is very propable that turbulent spots develop from the wave packets at the end of the 
non-linear stage of the laminar motion /3, 4/. This assumption is reinforced by the definite 
resemblance, mentioned in /5/, betweentheisolated spot in laminar flow and a laminar wave 
packet investigated in /6/. The pulsations occurring within the spot in the frequency range 
inherent in the selfexciting TS waves strenghten this resemblance. 

1. Equations and bdwdary conditions. In order to simplify the mathematical 
analysis of the wave packets, we shall assume that the Reynolds number R- =. Then the 
initial Navier-Stokes equations will be reduced asymptotically to the simpler Prandtl equations, 
with selfinduced pressure remaining to be determined /7-9/. In connection with the three- ._ 
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